Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 874
Filtrar
1.
Front Immunol ; 15: 1368322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558821

RESUMO

Introduction: Activation of complement through the alternative pathway (AP) has a key role in the pathogenesis of IgA nephropathy (IgAN). We previously showed, by intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE), C57BL/6 mice develop mild kidney damage in association with glomerular IgA deposition. To further address complement activity in causing glomerular histological alterations as suggested in the pathogenesis of IgAN, here we used mice with factor H mutation (FHW/R) to render AP overactivation in conjunction with LCWE injection to stimulate intestinal production of IgA. Methods: Dose response to LCWE were examined between two groups of FHW/R mice. Wild type (FHW/W) mice stimulated with LCWE were used as model control. Results: The FHW/R mice primed with high dose LCWE showed elevated IgA and IgA-IgG complex levels in serum. In addition to 100% positive rate of IgA and C3, they display elevated biomarkers of kidney dysfunction, coincided with severe pathological lesions, resembling those of IgAN. As compared to wild type controls stimulated by the same high dose LCWE, these FHW/R mice exhibited stronger complement activation in the kidney and in circulation. Discussion: The new mouse model shares many disease features with IgAN. The severity of glomerular lesions and the decline of kidney functions are further aggravated through complement overactivation. The model may be a useful tool for preclinical evaluation of treatment response to complement-inhibitors.


Assuntos
Glomerulonefrite por IGA , Lacticaseibacillus casei , Camundongos , Animais , Fator H do Complemento/genética , Camundongos Endogâmicos C57BL , Glomerulonefrite por IGA/patologia , Proteínas do Sistema Complemento/genética , Imunoglobulina A , Mutação
2.
BMC Genomics ; 25(1): 397, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654166

RESUMO

BACKGROUND: Jasmonate (JA) is the important phytohormone to regulate plant growth and adaption to stress signals. MYC2, an bHLH transcription factor, is the master regulator of JA signaling. Although MYC2 in maize has been identified, its function remains to be clarified. RESULTS: To understand the function and regulatory mechanism of MYC2 in maize, the joint analysis of DAP-seq and RNA-seq is conducted to identify the binding sites and target genes of ZmMYC2. A total of 3183 genes are detected both in DAP-seq and RNA-seq data, potentially as the directly regulating genes of ZmMYC2. These genes are involved in various biological processes including plant growth and stress response. Besides the classic cis-elements like the G-box and E-box that are bound by MYC2, some new motifs are also revealed to be recognized by ZmMYC2, such as nGCATGCAnn, AAAAAAAA, CACGTGCGTGCG. The binding sites of many ZmMYC2 regulating genes are identified by IGV-sRNA. CONCLUSIONS: All together, abundant target genes of ZmMYC2 are characterized with their binding sites, providing the basis to construct the regulatory network of ZmMYC2 and better understanding for JA signaling in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Sítios de Ligação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Genoma de Planta , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética
3.
Sci Total Environ ; 929: 172495, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38649056

RESUMO

Pollutants produced by cremation furnaces have gradually caused concern because of the increasing rate of cremation around the world. In this study, the levels, patterns, and emission factors of unintentional persistent organic pollutants (UPOPs) from cremation were investigated. The toxic equivalent (TEQ) concentrations (11 % O2 normalized) of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in flue gas ranged from 0.036 to 22 ng TEQ/Nm3, while the levels of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in flue gas samples ranged from 0.0023 to 1.2 ng TEQ/Nm3 and 0.17-44 pg TEQ/Nm3, respectively. The average concentrations of UPOPs in flue gas from car-type furnaces were higher than those from flat-panel furnaces. Secondary chambers and air pollution control devices were effective for controlling UPOPs emissions. However, heat exchangers were not as effective for reducing UPOPs emissions. It was observed that the UPOPs profiles exhibited dissimilarities between fly ash and flue gas samples. HxCDF, OCDD, and PeCDF were the dominant homologs of PCDD/Fs in flue gas, while HxCDF, PeCDF, and HpCDF were the dominant homologs in fly ash. The fractions of MoCBs and MoCNs in fly ash were higher than those in flue gas. Finally, we conducted an assessment of the global emissions of UPOPs from cremation in the years of 2019 and 2021. The total emission of UPOPs in 47 countries was estimated at 239 g TEQ in 2021, which was during the peak period of the COVID-19 pandemic worldwide. The emissions in 2021 increased by approximately 24 % compared to 2019, with the impact of COVID-19 being a significant factor that cannot be disregarded.

4.
Top Curr Chem (Cham) ; 382(2): 11, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589726

RESUMO

Silicone surfactants have garnered significant research attention owing to their superior properties, such as wettability, ductility, and permeability. Small-molecular silicone surfactants with simple molecular structures outperform polymeric silicone surfactants in terms of surface activity, emulsification, wetting, foaming, and other areas. Moreover, silicone surfactants with small molecules exhibit a diverse and rich molecular structure. This review discusses various synthetic routes for the synthesis of different classes of surfactants, including single-chain, "umbrella" structure, double chain, bolaform, Gemini, and stimulus-responsive surfactants. The fundamental surface/interface properties of the synthesized surfactants are also highlighted. Additionally, these surfactants have demonstrated enormous potential in agricultural synergism, drug delivery, mineral flotation, enhanced oil recovery, separation, and extraction, and foam fire-fighting.


Assuntos
Silicones , Tensoativos , Tensoativos/química , Propriedades de Superfície , Estrutura Molecular
5.
Mater Today Bio ; 26: 101033, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38533377

RESUMO

Regeneration of the architecturally complex blood vascular system requires precise temporal and spatial control of cell behaviours. Additional components must be integrated into the structure to achieve clinical success for in situ tissue engineering. Consequently, this study proposed a universal method for including any substrate type in vascular cell extracellular matrices (VCEM) via regulating selective adhesion to promote vascular tissue regeneration. The results uncovered that the VCEM worked as cell adhesion substrates, exhibited cell type specificity, and functioned as an address signal for recognition by vascular cells, which resulted in matching with the determined cells. The qPCR and immunofluorescence results revealed that a cell type-specific VCEM could be designed to promote or inhibit cell adhesion, consistenting with the expression patterns of eyes absent 3 (Eya3). In addition, a 3D vascular graft combined with VCEM which could recapitulate the vascular cell-like microenvironment was fabricated. The vascular graft revealed a prospective role for cellular microenvironment in the establishment of vascular cell distribution and tissue architecture, and potentiated the orderly regeneration and functional recovery of vascular tissues in vivo. The findings demonstrate that differential adhesion between cell types due to the cellular microenvironment is sufficient to drive the complex assembly of engineered blood vessel functional units, and underlies hierarchical organization during vascular regeneration.

6.
Int Immunopharmacol ; 132: 111905, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552291

RESUMO

INTRODUCTION: IgA nephropathy (IgAN) is the most prevalent form of glomerulonephritis. Unfortunately, molecular biomarkers for IgAN derived from omics studies are still lacking. This research aims to identify critical genes associated with IgAN through large-scale blood transcriptome analysis. METHODS: We constructed novel blood transcriptome profiles from peripheral blood mononuclear cells (PBMCs) of 53 Chinese IgAN patients and 28 healthy individuals. Our analysis included GO, KEGG, and GSEA for biological pathways. We analyzed immune cell profiles with CIBERSORT and constructed PPI networks with STRING, visualized in Cytoscape. Key differentially expressed genes (DEGs) were identified using CytoHubba and MCODE. We assessed the correlation between gene expressions and clinical data to evaluate clinical significance and identified hub genes through machine learning, validated with an open-access dataset. Potential drugs were explored using the CMap database. RESULTS: We identified 333 DEGs between IgAN patients and healthy controls, mainly related to immune response and inflammation. Key pathways included NK cell mediated cytotoxicity, complement and coagulation cascades, antigen processing, and B cell receptor signaling. Cytoscape revealed 16 clinically significant genes (including KIR2DL1, KIR2DL3, VISIG4, C1QB, and C1QC, associated with sub-phenotype and prognosis). Machine learning identified two hub genes (KLRC1 and C1QB) for a diagnostic model of IgAN with 0.92 accuracy, validated at 1.00 against the GSE125818 dataset. Sirolimus, calcifediol, and efaproxiral were suggested as potential therapeutic agents. CONCLUSION: Key DEGs, particularly VISIG4, KLRC1, and C1QB, emerge as potential specific markers for IgAN, paving the way for future targeted personalized treatment options.

7.
Int Immunopharmacol ; 131: 111920, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522142

RESUMO

The exact pathogenesis of IgA nephropathy (IgAN) is complex and so far, not well defined. Since it has been shown that microbial infections could induce high levels of type I interferon (IFN-I) and there is an evident link between mucosal infection and gross hematuria in IgAN, we hypothesized that IFN-I may play a role in the pathogenic process. In this study, we investigated the type I interferon status in IgAN based on the expression of 17 IFN-regulated genes (IRGs) in whole blood from 59 IgAN patients in a cross-sectional study, of which 34 patients followed longitudinally. Analysis of the IFN-score showed that there was a significant elevated IFN-score in the IgAN patients compared with healthy controls (n = 28, p = 9.80 × 10-3), and we observed an elevated IFN-score in the group with less tubular atrophy/interstitial fibrosis (p = 1.07 × 10-2) and with a lower proportion of mesangial hypercellularity (p = 1.23 × 10-2). In the longitudinal analysis, Cox regression analysis revealed that a higher IFN level was associated with a better renal outcome in IgAN after adjustments for gender and age (hazard ratio, 0.90; 95 % confidence interval, 0.81 to 0.97; p = 4.20 × 10-2). In conclusion, our finding suggested that IFN score may represent a novel type of biomarker in IgAN, which requires further exploration on its mechanism and therapeutic targeting.


Assuntos
Glomerulonefrite por IGA , Interferon Tipo I , Humanos , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/tratamento farmacológico , Interferon Tipo I/genética , Interferon Tipo I/uso terapêutico , Estudos Transversais , Prognóstico , Rim/patologia
8.
Biomed Mater ; 19(3)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518362

RESUMO

There is currently an urgent need to develop engineered scaffolds to support new adipose tissue formation and facilitate long-term maintenance of function and defect repair to further generate prospective bioactive filler materials capable of fulfilling surgical needs. Herein, adipose regeneration methods were optimized and decellularized adipose tissue (DAT) scaffolds with good biocompatibility were fabricated. Adipose-like tissues were reconstructed using the DAT and 3T3-L1 preadipocytes, which have certain differentiation potential, and the regenerative effects of the engineered adipose tissuesin vitroandin vivowere explored. The method improved the efficiency of adipose removal from tissues, and significantly shortened the time for degreasing. Thus, the DAT not only provided a suitable space for cell growth but also promoted the proliferation, migration, and differentiation of preadipocytes within it. Following implantation of the constructed adipose tissuesin vivo, the DAT showed gradual degradation and integration with surrounding tissues, accompanied by the generation of new adipose tissue analogs. Overall, the combination of adipose-derived extracellular matrix and preadipocytes for adipose tissue reconstruction will be of benefit in the artificial construction of biomimetic implant structures for adipose tissue reconstruction, providing a practical guideline for the initial integration of adipose tissue engineering into clinical medicine.


Assuntos
Tecido Adiposo , Tecidos Suporte , Tecidos Suporte/química , Estudos Prospectivos , Matriz Extracelular/metabolismo , Diferenciação Celular , Engenharia Tecidual
9.
Ecotoxicol Environ Saf ; 274: 116203, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479313

RESUMO

PCDD/Fs are dioxins produced by waste incineration and pose risks to human health. We aimed to detail the health risks of airborne and soil PCDD/Fs near a municipal solid-waste incinerator (MSWI) for the surrounding population and develop a new model that improves upon existing methods. Thus, we conducted field sampling and then investigated a MSWI in the Pearl River Delta (2016-2018). Our results showed that the carcinogenic and non-carcinogenic risk values of PCDD/Fs exposed to residents in nearby areas were acceptable, with hazard index (HI) values lower than 1.0 and a total carcinogenic risk lower than 1.0E-6. Notably, the results raised concerns regarding higher non-carcinogenic risks in children than in adults. Comparative analysis of the frequency accumulation diagram, accumulated probability risk, and the absolute value of error (δ) between the 95% confidence interval (CI) and the 90% CI of the Monte Carlo stochastic simulation-triangular fuzzy number (MCSS-TFN) and the MCSS model, respectively, demonstrated that the MCSS-TFN exhibited less uncertainty than the MCSS model, regardless of the health risk value of PCDD/Fs in ambient air or in soil. This observation underscores the superiority of the MCSS-TFN model over other models in assessing the health risks associated with PCDD/Fs in situations with limited data. Our new method overcomes the limited dataset size and high uncertainty in assessing the health risks of dioxin substances, providing a more comprehensive understanding of their associated health risks than MCSS models.


Assuntos
Poluentes Atmosféricos , Dioxinas , Dibenzodioxinas Policloradas , Adulto , Criança , Humanos , Resíduos Sólidos , Monitoramento Ambiental/métodos , Dibenzodioxinas Policloradas/toxicidade , Dibenzodioxinas Policloradas/análise , Dibenzofuranos , Poluentes Atmosféricos/análise , Incineração , Dioxinas/toxicidade , Medição de Risco , Dibenzofuranos Policlorados/análise , Solo
10.
Front Med (Lausanne) ; 11: 1344219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439903

RESUMO

Introduction: IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis globally. While nephrotic syndrome (NS) is uncommon in IgAN, its significance remains unclear. Methods: We conducted a retrospective analysis of 170 IgAN patients, classifying them into NS (n = 85) and non-NS (n = 5) groups. Our study aims to compare their clinical characteristics, treatment responses, and prognoses. Patients were selected based on renal biopsy from 2003 to 2020. Propensity score matching ensured comparability. Clinical, pathological, and immunological data were analyzed. Composite endpoints were defined as end-stage kidney disease (ESKD) or a 30% decline in estimated glomerular filtration rate (eGFR). Results: NS patients showed higher eGFR (74.3 ± 36.8 vs. 61.5 ± 33.6 mL/min.1.73 m2, p = 0.02), severe hematuria (35.0 (4.7,147.5) vs. 4.0 (1.8,45,0) cells/µl, p < 0.001), severe foot process effacement (p = 0.01), and lower C3 levels (1.0 ± 0.3 vs. 1.1 ± 0.2 g/L, p = 0.03). In contrast, the non-NS group had higher BMI (24.3 ± 4.0 vs. 26.8 ± 3.7 kg/m2, p < 0.001) and elevated serum uric acid levels (376 (316,417) vs. 400 (362, 501) mmol/L, p = 0.001), suggesting metabolic factors might contribute to their condition. Both groups exhibited similar MESTC scores. NS patients had higher complete remission rates (26.2% vs. 14.1%, p = 0.04). Cox regression revealed NS independently associated with a higher risk of composite endpoints (HR = 1.97, 95% CI 1.05-3.72, p = 0.04). Linear mixed models did not show significant eGFR trajectory differences. Discussion: This study has established that IgAN patients with NS exhibit distinct characteristics, including active disease and increased complement activation. NS is independently associated with a poorer prognosis, emphasizing the need for targeted interventions in this subgroup.

12.
J Child Neurol ; : 8830738241239703, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488459

RESUMO

OBJECTIVE: The primary objective was to elucidate the epidemiologic characteristics, risk determinants, and clinical outcomes associated with Pseudomonas aeruginosa-induced meningitis. METHODS: All cases of meningitis caused by Pseudomonas aeruginosa that were treated at the hospital between 2012 and 2022 were retrospectively analyzed and detailed. RESULTS: During a 10-year period, only 10 patients satisfied the inclusion criteria. Three patients had previously undergone neurosurgical procedures and 4 patients had leukemia. CONCLUSIONS: Although Pseudomonas aeruginosa meningitis possesses a low incidence rate, the rate of mortality is high. Patients with leukemia or those who have undergone neurosurgery are the most susceptible to diagnosis. Cases of severe neutropenia present only mild or no cerebrospinal fluid pleocytosis. In patients with sensitive Pseudomonas aeruginosa meningitis, the timely use of anti-Pseudomonas carbapenems for intravenous treatment is highly effective. For drug-resistant Pseudomonas aeruginosa meningitis, intrathecal polymyxins administration can be an effective treatment option.

13.
Am J Kidney Dis ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364955

RESUMO

RATIONALE & OBJECTIVE: Proteinuria is a surrogate end point for predicting long-term kidney outcomes in IgA nephropathy (IgAN) with levels<1g/day identified as a therapeutic target. However, this threshold has not been sufficiently studied. We quantified the associations of progression of IgAN with various levels of proteinuria. STUDY DESIGN: Observational cohort study. SETTING & PARTICIPANTS: 1,530 patients with IgAN and at least 12 months of follow-up at Peking University First Hospital. EXPOSURE: Proteinuria levels updated over time (time-varying proteinuria, TVP). OUTCOME: A composite kidney outcome of a 50% reduction in the estimated glomerular filtration rate or end-stage kidney disease. ANALYTICAL APPROACH: Marginal structural models. RESULTS: After a median follow-up period of 43.5 (IQR, 27.2-72.8) months, 254 patients (16.6%) developed the composite kidney outcome. A graded association was observed between TVP and composite kidney outcomes with higher risk among those with proteinuria of≥0.5g/day. Compared with TVP<0.3g/day, the HRs for proteinuria levels of 0.3 to<0.5g/day, 0.5 to<1.0g/day, 1.0 to<2.0g/day, and≥2.0g/day were 2.22 (95% CI, 0.88-5.58), 4.04 (95% CI, 1.93-8.46), 8.46 (95% CI, 3.80-18.83), and 38.00 (95% CI, 17.62-81.95), respectively. The trend was more pronounced in patients with baseline proteinuria of≥1.0g/day, among whom a higher risk was observed with TVP of 0.3 to<0.5g/day compared with TVP<0.3g/day (HR, 3.26 [95% CI, 1.07-9.92], P=0.04). However, in patients with baseline proteinuria levels of<1g/day, the risk of composite kidney outcome only began to increase when TVP was≥1.0g/day (HR, 3.25 [95% CI, 1.06-9.90]). LIMITATIONS: Single-center observational study, selection bias, and unmeasured confounders. CONCLUSIONS: This study showed that patients with IgAN and proteinuria levels of>0.5g/day, have an elevated risk of kidney failure especially among patients with proteinuria levels≥1.0g/day before initiating treatment. These data may serve to inform the selection of proteinuria targets in the treatment of IgAN. PLAIN-LANGUAGE SUMMARY: The presence of proteinuria has often been considered a surrogate end point and a possible therapeutic target in clinical trials in IgA nephropathy (IgAN). Some guidelines recommend a reduction in proteinuria to<1g/day as a treatment goal based on the results of previous longitudinal studies. However, these findings may have been biased because they did not properly adjust for time-dependent confounders. Using marginal structural models to appropriately account for these confounding influences, we observed that patients with IgAN and proteinuria levels≥0.5g/day have an elevated risk of kidney failure, especially among patients who had proteinuria levels of≥1.0g/day before initiating treatment. These data may serve to inform the selection of proteinuria targets in the treatment of IgAN.

14.
Health Inf Sci Syst ; 12(1): 12, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38404715

RESUMO

Cancer is one of the most deadly diseases in the world. Accurate cancer subtype classification is critical for patient diagnosis, treatment, and prognosis. Ever-increasing multi-omics data describes the characteristics of the patients from different views and serves as complementary information to promote cancer subtype identification. However, omics data generally have different distributions and high dimensions. How to effectively integrate multiple omics data to classify cancer subtypes accurately is a challenge for researchers. This work proposes a method integrating multi-omics data based on supervised graph contrast learning (MCRGCN) to classify cancer subtypes. The method considers the unique feature distribution of each omics data and the interaction of different omics data features to improve the accuracy of cancer subtype classification. To achieve this, MCRGCN first constructs different sample networks based on the multi-omics data of the samples. Then, it puts the omics data and adjacency matrix of the sample into different residual graph convolution models to get multi-omics features of the samples, which are trained with a supervised comparison loss to maintain that the sample features of each omics should be as consistent as possible. Finally, we input the sample features combining multi-omics features into a classifier to obtain the cancer subtypes. We applied MCRGCN to the invasive breast carcinoma (BRCA) and glioblastoma multiforme (GBM) datasets, integrating gene expression, miRNA expression, and DNA methylation data. The results demonstrate that our model is superior to other methods in integrating multi-omics data. Moreover, the results of survival analysis experiments demonstrate that the cancer subtypes identified by our model have significant clinical features. Furthermore, our model can help to identify potential biomarkers and pathways associated with cancer subtypes.

15.
Microorganisms ; 12(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399680

RESUMO

Improving the soil structure and fertility of saline-alkali land is a major issue in establishing a sustainable agro-ecosystem. To explore the potential of different straw returning in improving saline-alkaline land, we utilized native saline-alkaline soil (SCK), wheat straw-returned saline-alkaline soil (SXM) and rapeseed straw-returned saline-alkaline soil (SYC) as our research objects. Soil physicochemical properties, fungal community structure and diversity of saline-alkaline soils were investigated in different treatments at 0-10 cm, 10-20 cm and 20-30 cm soil depths. The results showed that SXM and SYC reduced soil pH and total salinity but increased soil organic matter, alkali-hydrolyzable nitrogen, available phosphorus, total potassium, etc., and the enhancement effect of SYC was more significant. The total salinity of the 0-10 cm SCK soil layer was much higher than that of the 10-30 cm soil layers. Fungal diversity and abundance were similar in different soil layers in the same treatment. SXM and SYC soil had higher fungal diversity and abundance than SCK. At the genus level, Plectosphaerella, Mortierella and Ascomycota were the dominant groups of fungal communities in SXM and SYC. The fungal diversity and abundance in SXM and SYC soils were higher than in SCK soils. Correlation network analysis of fungal communities with environmental factors showed that organic matter, alkali-hydrolyzable nitrogen and available phosphorus were the main environmental factors for the structural composition of fungal communities of Mortierella, Typhula, Wickerhamomyces, Trichosporon and Candida. In summary, straw returning to the field played an effective role in improving saline-alkaline land, improving soil fertility, affecting the structure and diversity of the fungal community and changing the interactions between microorganisms.

16.
Ecotoxicol Environ Saf ; 273: 116123, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394754

RESUMO

High levels of copper released in the soil, mainly from anthropogenic activity, can be hazardous to plants, animals, and humans. The present research aimed to estimate the suitability and effectiveness of rapeseed (Brassica napus L.) as a possible soil remediation option and to uncover underlying adaptive mechanisms A pot experiment was conducted to explore the effect of copper stress on agronomic and yield traits for 32 rapeseed genotypes. The copper-tolerant genotype H2009 and copper-sensitive genotype ZYZ16 were selected for further physiological, metabolomic, and transcriptomic analyses. The results exhibited a significant genotypic variation in copper stress tolerance in rapeseed. Specifically, the ratio of seed yield under copper stress to control ranged from 0.29 to 0.74. Furthermore, the proline content and antioxidant enzymatic activities in the roots were greater than those in the shoots. The accumulated copper in the roots accounted for about 50% of the total amount absorbed by plants; thus, the genotypes possessing high root volumes can be used for rhizofiltration to uptake and sequester copper. Additionally, the pectin and hemicellulose contents were significantly increased by 15.6% and 162%, respectively, under copper stress for the copper-tolerant genotype, allowing for greater sequestration of copper ions in the cell wall and lower oxidative stress. Comparative analysis of transcriptomes and metabolomes revealed that excessive copper enhanced the up-regulation of functional genes or metabolites related to cell wall binding, copper transportation, and chelation in the copper-tolerant genotype. Our results suggest that copper-tolerant rapeseed can thrive in heavily copper-polluted soils with a 5.85% remediation efficiency as well as produce seed and vegetable oil without exceeding food quality standards for the industry. This multi-omics comparison study provides insights into breeding copper-tolerant genotypes that can be used for the phytoremediation of heavy metal-polluted soils.


Assuntos
Brassica napus , Brassica rapa , Poluentes do Solo , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Cobre/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Melhoramento Vegetal , Brassica rapa/metabolismo , Solo
17.
Environ Sci Technol ; 58(6): 2786-2797, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38311839

RESUMO

Understanding the underlying mechanisms of soil microbial nitrogen (N) utilization under land use change is critical to evaluating soil N availability or limitation and its environmental consequences. A combination of soil gross N production and ecoenzymatic stoichiometry provides a promising avenue for nutrient limitation assessment in soil microbial metabolism. Gross N production via 15N tracing and ecoenzymatic stoichiometry through the vector and threshold element ratio (Vector-TER) model were quantified to evaluate the soil microbial N limitation in response to land use changes. We used tropical soil samples from a natural forest ecosystem and three managed ecosystems (paddy, rubber, and eucalyptus sites). Soil extracellular enzyme activities were significantly lower in managed ecosystems than in a natural forest. The Vector-TER model results indicated microbial carbon (C) and N limitations in the natural forest soil, and land use change from the natural forest to managed ecosystems increased the soil microbial N limitation. The soil microbial N limitation was positively related to gross N mineralization (GNM) and nitrification (GN) rates. The decrease in microbial biomass C and N as well as hydrolyzable ammonium N in managed ecosystems led to the decrease in N-acquiring enzymes, inhibiting GNM and GN rates and ultimately increasing the microbial N limitation. Soil GNM was also positively correlated with leucine aminopeptidase and ß-N-acetylglucosaminidase. The results highlight that converting tropical natural forests to managed ecosystems can increase the soil microbial N limitation through reducing the soil microbial biomass and gross N production.


Assuntos
Ecossistema , Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Microbiologia do Solo , Florestas , Carbono , Fósforo/metabolismo
18.
Nutrients ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337727

RESUMO

Panax ginseng, a traditional Chinese medicine with a history spanning thousands of years, faces overexploitation and challenges related to extended growth periods. Tissue-cultured adventitious roots and stem cells are alternatives to wild and field-cultivated ginseng. In this study, we assessed the in vitro xanthine oxidase and α-glucosidase inhibitory activities of saponin extracts among cultured cambial meristematic cells (CMC), adventitious ginseng roots (AGR), and field-cultivated ginseng roots (CGR). The xanthine oxidase (XO) and α-glucosidase inhibitory activities were determined by uric acid estimation and the p-NPG method, respectively. Spectrophotometry and the Folin-Ciocalteu, aluminum nitrate, and Bradford methods were employed to ascertain the total saponins and phenolic, flavonoid, and protein contents. The calculated IC50 values for total saponin extracts against XO and α-glucosidase were 0.665, 0.844, and >1.6 mg/mL and 0.332, 0.745, and 0.042 mg/mL for AGR, CMC, CGR, respectively. Comparing the total saponin, crude protein, and total phenolic contents revealed that AGR > CMC > CGR. To the best of our knowledge, this study presents the first report on the in vitro comparison of xanthine oxidase and α-glucosidase inhibitory activities among AGR, CMC, and CGR. The findings offer valuable insights into the development of hypoglycemic and antihyperuricemic medicinal, nutraceutical, and functional products utilizing AGR and CMC.


Assuntos
Panax , Saponinas , Panax/metabolismo , Xantina Oxidase/metabolismo , alfa-Glucosidases/metabolismo , Raízes de Plantas/metabolismo
19.
Plants (Basel) ; 13(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38337912

RESUMO

Plants face multiple stresses in their natural habitats. WRKY transcription factors (TFs) play an important regulatory role in plant stress signaling, regulating the expression of multiple stress-related genes to improve plant stress resistance. In this study, we analyzed the expression profiles of 25 BnWRKY genes in three stages of ramie growth (the seedling stage, the rapid-growth stage, and the fiber maturity stage) and response to abiotic stress through qRT-PCR. The results indicated that 25 BnWRKY genes play a role in different growth stages of ramie and were induced by salt and drought stress in the root and leaf. We selected BnWRKY49 as a candidate gene for overexpression in Arabidopsis. BnWRKY49 was localized in the nucleus. Overexpression of BnWRKY49 affected root elongation under drought and salt stress at the Arabidopsis seedling stage and exhibited increased tolerance to drought stress. Further research found that BnWRKY49-overexpressing lines showed decreased stomatal size and increased cuticular wax deposition under drought compared with wild type (WT). Antioxidant enzyme activities of SOD, POD, and CAT were higher in the BnWRKY49-overexpressing lines than the WT. These findings suggested that the BnWRKY49 gene played an important role in drought stress tolerance in Arabidopsis and laid the foundation for further research on the functional analysis of the BnWRKYs in ramie.

20.
Lasers Med Sci ; 39(1): 83, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418639

RESUMO

PURPOSE: To evaluate the changes in macular structures following subthreshold micropulse laser (SHML) treatment for chronic central serous chorioretinopathy (cCSC). METHODS: Data of 33 eyes from 31 cCSC patients treated with SHML and followed up for at least 6 months has been included in this retrospective study. Main outcome measurements include resolution of subretinal fluid (SRF) and pigment epithelial detachment (PED), the recovery of ellipsoid zone (EZ) continuity, and the foveal outer nuclear layer (ONL) thickness along with its ratio. RESULTS: Mean observation period is 7.355 months (ranging from 6 to 24 months) and mean number of treatments administered is 1.839 (ranging from 1 to 5). 6 months after SHML treatment, there is a significant decrease in the area of SRF and PED (P < 0.001, P = 0.010, respectively). Additionally, the frequency of continuous EZ and the foveal ONL thickness reveal a significant increase (P<0.001, P = 0.005, respectively). The ratio of foveal ONL thickness is significantly higher after laser treatment, particularly in patients with a disease duration of ≤12 months (p = 0.022, P=0.036, respectively). CONCLUSION: SHML treatment proves to be effective in cCSC eyes, leading to satisfactory recovery of macular structures, especially the photoreceptor layer.


Assuntos
Coriorretinopatia Serosa Central , Terapia a Laser , Humanos , Coriorretinopatia Serosa Central/radioterapia , Coriorretinopatia Serosa Central/cirurgia , Estudos Retrospectivos , Angiofluoresceinografia , Acuidade Visual , Retina , Tomografia de Coerência Óptica , Doença Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...